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On the use of lagrangian variables in descriptions
of unsteady boundary-layer separation
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The lagrangian description of unsteady boundary-layer separation is reviewed from
both analytical and numerical perspectives. We explain in simple terms how particle
distortion gives rise to unsteady separation, and why a theory centred on lagrangian
coordinates provides the clearest description of this phenomenon. Included in the
review are some of the more recent results for unsteady three-dimensional
compressible separation. The different forms of separation that can arise from
symmetries are emphasized. Current work includes a possible description of
separation when the detaching vorticity layer exits the classical boundary-layer
region, but still remains much closer to the surface than a typical body length-scale.
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1. Introduction

Mathematical descriptions of fluid flows must yield physical results that are
independent of the coordinate system and the choice of mathematical variables. For
a given physical model, the choice of mathematical formulation is determined by
criteria of simplicity and the insight that the mathematics yields of the underlying
physical processes. For many fluid dynamical problems, and particularly for steady
flows, the simplest and cleanest mathematics arises from the use of eulerian
coordinates. However, for other flows, such as unsteady flows in which advection
dominates diffusion, lagrangian particle coordinates may be more appropriate.

In this article we show how, over the last decade or so, the use of lagrangian
coordinates has yielded insights into unsteady separation which investigations using
eulerian coordinates in the preceding seventy years had overlooked. By ‘separation’
we refer to the high Reynolds number flow phenomenon by which thin viscous
boundary layers generated next to a rigid surface can ‘break away’ from that
surface. This definition of separation is close to that of both Prandtl (1904) and Sears
& Telionis (1975). In addition it is consistent with J. H. B. Smith’s (personal
communication) alternative and equivalent definition that separation occurs when
the dominant mode of vorticity transport away from the surface, but within the
boundary layer, is advection.
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We note that for two-dimensional flow past a rigid surface, unsteady separation is
ordinarily preceded by a stage of flow reversal. However, as Moore (1958), Rott
(1956) and Sears (1956) have pointed out, in unsteady problems the occurrence of
reversed flow or recirculating eddies need not imply the dramatic ‘breakup’ of the
boundary layer in which vorticity is driven away from the surface by advective
forces, the process we call separation. Conversely, the computations of Peridier &
Walker (1989) and the experiments of Didden & Ho (1985) show separation when the
flow in the boundary layer is no longer reversed.

An understanding of separation is of considerable interest in the design of air, land,
and sea vehicles because boundary-layer vorticity induces the important transverse
‘lift” forces exerted on these vehicles; therefore its ejection has a dramatic impact on
the fluid mechanical loads. For similar reasons, separation is important in the flow
about obstacles such as chimneys, cooling towers and offshore structures (e.g. oil rigs),
and it plays a role in several physiological problems (e.g. the growth of atherosclerotic
lesions). Unsteady separation may also be closely related to phenomena that arise in
the interior of turbulent boundary layers (e.g. the formation of hairpin vortices). A
better grasp of the physical processes involved in separation may help in the
construction of improved analytical and computational fluid mechanics methods to
describe these flows.

In §2 we briefly highlight the assumptions inherent in classical boundary-layer
theory, and then describe a simple physical model of unsteady separation. At the
start of §3 we review in detail the mathematical description of unsteady, two-
dimensional, incompressible separation. This is followed by an outline of the
generalizations to compressible three-dimensional flow, including the special cases
when there are symmetries present. A theoretical description of a ‘weak’ form of
asymmetric separation, known as ‘marginal’ separation, is given in §4. The
differences in marginal separation resulting from imposing symmetry are discussed
in §5, while closing remarks are given in §6. In keeping with the theme of this issue
we concentrate on the lagrangian picture of unsteady separation, and refer the reader
elsewhere for more comprehensive reviews of steady separation, interacting theories,
ete. (see, for example, Smith 1986; Ghia 1987; Simpson 1989).

2. The classical boundary-layer model

There are two major approximations involved in deriving the well-known
equations of Prandtl’s boundary-layer theory. The first is that viscous diffusion can,
to leading order, be ignored except in the direction normal to the local boundary.
Usually this is not a severe approximation in the sense that, even when classical
boundary-layer theory fails (possibly through the formation of singularities), it is
seldom that viscous diffusion parallel to the boundary is the neglected physical effect
that needs to be reintroduced. Indeed, although spanwise diffusion is important in
Gortler-vortex type flows, there are few instances except fully turbulent flow where
streamwise viscous diffusion is dynamically significant; it is this observation that is
the rationale behind the parabolized Navier-Stokes equations and other simplified
sets of equations such as those proposed by Smith et al. (1984) (but see Cowley &
Smith (1985) for a counter-example).

The other major assumption in classical boundary-layer theory is that the thin
boundary layer has no significant effect on the pressure distribution close to the wall.
Together, these two assumptions imply that if some mechanism exists to generate

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 1. Mechanics of unsteady separation (schematic). (@) The particle deformation which gives
rise to separation. (b) Separation of the boundary layer into sublayers due to the particle
deformation.

large velocities normal to the boundary there is neither a pressure gradient nor a
viscous force induced to oppose the motion; as a result velocities can, in principle,
become unbounded (cf. flows governed by the Navier—Stokes or Euler equations,
where, except for special cases, pressure gradients, etc., are generated to inhibit the
development of large velocities).

In the case of unsteady separation, such unbounded velocities are in fact predicted
by classical boundary-layer solutions. These velocities are self-induced. To see how
this can occur, consider a little mass of incompressible fluid (a fluid ‘particle’) inside
a two-dimensional boundary layer. If the fluid particle begins to shorten considerably
in the direction parallel to the boundary, then to conserve volume, the particle must
simultaneously expand in the orthogonal direction (see the schematic in figure 1a).
Within the classical boundary-layer model there is no resistance to such a distortion,
and thus it is possible to squash a fluid particle to ‘zero thickness’ in the direction
parallel to the boundary, and consequently to ‘infinite’ thickness in the direction
normal to the boundary. As a result an ‘infinite’ velocity is generated normal to the
boundary, and the fluid particles above the squashed one are ejected from the
boundary layer.

The central role of the deformed fluid particle in the above physical description
suggests that a mathematical analysis of unsteady boundary-layer separation based
on lagrangian coordinates may be significantly simpler than an eulerian one.
Further, the observation that viscous diffusion normal to the boundary is seldom
important also suggests that the new physics which needs to be introduced into the
classical boundary-layer model once the fluid particle has been excessively deformed
is a variation in pressure gradient normal to the boundary. Indeed, starting from the
Navier-Stokes equations it is possible to formulate so-called asymptotic ‘interaction’
problems which account for the pressure disturbances induced by the rapid
stretching of the fluid particle (Elliott ef al. 1983). As demonstrated in §4, lagrangian
coordinates are advantageous in solving a special case when the interaction is in some
sense ‘weak’.

3. Unsteady boundary-layer separation

3.1. Lagrangian formulation

Initially we will focus on two-dimensional incompressible flows as described by
Van Dommelen & Shen (1982), and then we will indicate how the analysis was
generalized to three-dimensional compressible flows by Van Dommelen & Cowley
(1990) (henceforth referred to as VDC). For definiteness we assume that fluid with
newtonian viscosity v and density p is flowing with a typical velocity U past a body

Phil. Trans. R. Soc. Lond. A (1990)
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of typical dimension D. Lengths, velocities, time and pressure are then non-
dimensionalized by D, U, D/U and pU? respectively, and a Reynolds number

R=1UD/v,

which we assume to be large, is introduced. As is conventional in boundary-layer
theory, coordinates (¥, R™*y) are taken parallel and normal, respectively, to the
surface of the body, while the corresponding velocity components are (u, R3v). The
two-dimensional boundary-layer equations in eulerian coordinates are then (see, for
example, Rosenhead 1963)

w,tuu, +ou, = —p,+u,,, (3.1a)
p, =0, u,+v,=0. (3.1b, ¢)

If the surface of the body is fixed and impermeable, the boundary conditions on the
surface are

u=v=0 on y=0. (3.2a)
Far from the surface, the boundary-layer solution must match with a known inviscid
flow solution that provides a slip velocity u,(«,¢) on the surface of the body, i.e.

Uu—>u, as y-—o0. (3.20)

Using this matching condition it follows that the pressure gradient is a known
function of x and ¢:
TPy = Ugy T Uy Uy (3.2¢)
Now we will formulate the same problem in lagrangian coordinates, using fluid
particles as the basis of the coordinate system. A convenient coordinate system for
these particles (§,#) is given by their eulerian position at some chosen instant, say
L=t
&= (5777) =(x,y) at t=4,. (3.3)
The velocity components of the flow are then related to the fluxions of the projected
position x of the particle along the wall and the scaled distance y from the wall by
the kinematic relations

u(G,t) = #(6, 1), v(e,t) =y(E, 1), (3.4a, b)

where a dot represents a lagrangian time derivative.
In lagrangian coordinates, conservation of mass (3.1¢) can be expressed in terms
of a conserved jacobian determinant

X, x
J(x,y) = } £ T
Ye Yo
where a subscript comma denotes a lagrangian derivative. In these coordinates the
momentum equation (3.1a) becomes

u=—p,+D,(D,u), (3.6a)

where from (3.2¢) the pressure gradient is a known function of x and ¢, and D, is the
eulerian y-derivative. The latter can be written in the lagrangian form (see, for
example, Shen 1978a)

=1, (3.5)

Dyu=J(x,u) = u,—x,u, (3.6b6)

In a lagrangian formulation the boundary conditions (3.2a, b) remain essentially
unchanged, although they need to be supplemented by conditions on (x,y):

Phil. Trans. R. Soc. Lond. A (1990)
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Unsteady boundary-layer separation 347
x=£u=0) and (y=0,0=0) on 75=0, (3.7a, b)
Z=u—->ulr,t) as 75— 0. (3.7¢)

The main simplification of a lagrangian approach is evident from the system of
equations (3.4a, 3.6a,b, 3.7a, ¢) that provides sufficient information to solve for
the position  and velocity u parallel to the surface independently of the position y
and velocity » normal to the surface. It is this decoupling that is the key to much of
the analysis that follows. Once « is known, the normal particle position y can be
found by integration of the jacobian (3.5) along lines of constant x; in particular

5 ds
= | ——, 3.8
Y Jo (95,2("9",27,)E (8.8)

where ds* = d§%+d#»?, and the integral is performed in the lagrangian (£, ¢) coordinate
system along the lines of constant « and ¢, i.e. lines that in physical space are vertical
through the boundary layer.

3.2. Hypothesis

To make further analytical progress it is necessary to assume that up to and
including the time of separation, the solution for the projected position x remains a
regular function of € and ¢. Any singularities that develop will then be associated with
irregularities in the continuity equation. From either (3.5) or (3.8) such singularities
can occur at a fluid particle, say & = &,, if at some time, say ¢ = ¢, a stationary point
develops in x(&,¢) (Van Dommelen & Shen 1980), i.e. if

ve=x,=0 at =&, (=1, (3.9)

There are several arguments in favour of the regularity of x, and the implication
that singularities form only in y. First, if « is assumed to be regular, then the analytic
structure of several separation processes previously studied using eulerian co-
ordinates can be recovered by a simpler lagrangian analysis (VDC). Second, Van
Dommelen (1981) showed analytically that the inviscid version of (3.4a, 6a, 7¢) has
solutions that are regular functions of the lagrangian variables; he also showed that
if (3.9) was satisfied y(&,t) and v(&, ¢) become singular. Although this analysis can be
extended by expanding in powers of a small coefficient of viscosity, the example is
somewhat artificial because during most of the evolution of the boundary layer,
viscous effects are significant and cannot be neglected. Similar analyses dem-
onstrating the analyticity of the projected position for the case of a three-
dimensional inviscid flow with a symmetry line have been presented by Van
Dommelen (1981) for the flow on the symmetry line, and Stern & Paldor (1983),
Russell & Landahl (1984), and Stuart (1984, 1988, 1990) for the flow near the symmetry
line (see also VDC).

However, the most convincing argument in favour of the assumption of regularity
comes from numerical solutions of the lagrangian boundary-layer equations. For
example, Van Dommelen & Shen’s (1980) computation of the boundary layer on an
impulsively started circular cylinder provided direct numerical evidence on
regularity of solutions x(&,¢) to the momentum equation. Further, the lagrangian
computations are in remarkably close agreement with the results obtained in terms
of eulerian coordinates by Cowley (1983) using a series extension technique, by
Ingham (1984) using a spectral method, by Matsushita ef al. (1984) using an integral
method, and by Henkes & Veldman (1987), Riley & Vasantha (1989a) and Puppo

Phil. Trans. R. Soc. Lond. A (1990)
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(1990) using finite-difference schemes. The fact that all these different formulations
and methods of solution produce results in excellent agreement with one another
until very close to the breakdown of the solution at separation, strongly suggests
that the regularity hypothesis in lagrangian coordinates is correct at least for the
particular example of the impulsively started cylinder. (It should be noted that some
of the earlier eulerian finite-difference computations gave different results, for
example those of Telionis & Tsahalis (1974), Wang (1979) and Cebeci (1986). We
believe that these inconsistencies are not independently supported and that they do
not show that the regularity hypothesis is invalid.)

Further support for the regularity of solutions of the classical boundary-layer
equations in lagrangian coordinates is given by many other lagrangian numerical
calculations such as (a) flow over a translating and rotating cylinder (Shen & Wu
1988), (b) starting flow over an airfoil (Wu 1989), (c) flow on rotating and translating
spheres (Van Dommelen 1987, 1990), (d) impulsively started flow through a curved
pipe (Lam 1988) and (e) vortex-induced boundary-layer flow (Peridier & Walker
1989). In particular, Van Dommelen (1990) has performed high-resolution numerical
calculations in a study of the boundary layer at the equatorial plane of a spinning
sphere ; he found no evidence of singular behaviour in the solution of the momentum
equation up to and including the start of separation.

Numerical calculations cannot, however, rigorously prove that solutions to the
momentum equation are regular beforé separation. Besides, such a proof may be
complicated because (i) a finite time after a stationary point has developed the
solution to the momentum equation can become singular (Van Dommelen 1990) and
(ii) at large times the solution can become exponentially close to a singularity (see
§5). In absence of a proof, for the rest of this paper we will assume that the solution
for x is indeed regular.

3.3. Moore—Rott—Sears conditions

As indicated above, the assumption that x(&, ¢) is analytic implies that singularities
can develop only in the continuity equation, and only at times at which the
lagrangian derivatives (3.9) vanish. This condition implies that for all infinitesimal
changes in fluid particle, 0&, the corresponding change in projected particle position
i
’ ox = 0E Vyz = 0. (3.10)
Physically this means that an infinitesimal particle volume 0£0% around point s has
been squashed to zero size in the z-direction parallel to the wall. Because particle
volume is conserved, the compression in this direction is compensated for by a rapid
expansion in the y-direction. This drives the fluid above the squashed region 0£d»
‘far’ from the wall to form a separating vorticity layer (cf. the physical description
given in §2). Such a process constitutes separation in the sense of Sears & Telionis
(1975), since the particle distance from the wall becomes too large, ‘infinite’, to be
described by the usual boundary-layer scale.

Yet a lagrangian approach does more than just provide this natural physical
description; it also makes it simple to verify that two properties known as the
Moore—Rott—Sears conditions are satisfied at separation (Sears & Telionis 1975). In
the present context the first of these conditions asserts that the separation structure
moves along the wall with the velocity of the squashed fluid particle. Therefore in a
system that moves with the separation structure, the velocity profile will be zero at
the squashed particle. The second condition is that the squashed particle has zero

Phil. Trans. R. Soc. Lond. A (1990)
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vorticity, which implies that the velocity profile also has a stationary point at the
particle.

We will be most concerned with the onset of separation at the particle which is
the first to be squashed to zero size in the streamwise direction (henceforth &, will
denote this particle and ¢, will denote the time of the onset of separation). That the
first MRS condition is satisfied at ¢, follows immediately from the asymptotic scaling
(3.15¢) derived in the next subsection. However, solutions to the momentum
equation can be found at later times, even if their physical relevance is questionable
(Elliott et al. 1983). For these later times the first MRS condition follows directly
from the requirement (3.9) that the lagrangian derivatives vanish:

& alame ) = £+ MY = e ), @.11)
where &y gs(f) indicates the lagrangian coordinate of a stationary point.
The second MRS condition of zero vorticity is a consequence of (3.6b) and (3.9)

because

D,u=0 when V.x=0. (3.12)
Experimental confirmation of the MRS conditions in unsteady flow is given by
Didden & Ho (1985). For verification of these conditions in other unsteady classical
boundary-layer solutions, see for example Williams (1977) and Van Dommelen &
Shen (1983 a).

3.4. Asymptotic description

The regularity hypothesis, and the simplicity of the condition of vanishing
lagrangian derivatives (3.9), enabled Van Dommelen & Shen (1982) to obtain a more
precise description of separation near the squashed particle &, at times close to the
initial separation time ¢.. To do this they formed a local Taylor series expansion for
the regular solution to the momentum equation near the stationary point (&, ¢,), and
then expanded the singular solution of the continuity equation in an asymptotic
series.

To be more specific, if the function x(&, ¢) is a regular function of € and ¢, then close
to &, t, it can be expanded as

T =g +E 108 88;(x ij)s+ X §06, 88,88, (w yyp)s+ - + B(d +28€z( st t
i,k
(3.13a)
where (£,,8,) = (§,7), x;=2,,8§; =&, 8 =t—t, and the stationary point

condition (3.9) has been used. This expression can be simplified by a transformation

I, = Y a, 8, (3.13b)
J

which shifts the lagrangian coordinate system to the separation particle, s, and with
a suitable choice of a;;, rotates it so as to eliminate the mixed partial derivative (x ;,)s
in the new coordinate system. Henceforth we will adopt the convention of omitting
the subscripts comma and s if they occur together, i.e. x; = (x ;);. The Taylor series
expansion (3.13a) becomes

x—x+22x“l2+ 2§ bl L+ .+ Ot(g +le+ D+ (3.13¢)
Wi, k

where the derivatives are with respect to the new coordinate system.

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 2. Structure of asymmetric two-dimensional unsteady separation. (a) Lines of constant
particle position x in the lagrangian domain, and in the physical domain (inset). (b) Scaled and
normalized boundary-layer thickness near unsteady separation. (¢) Computed boundary-layer
displacement thickness, ¢*, for an impulsively started circular cylinder: ., coarse grid: o,
Cebeci (1979). (d) Scaled and normalized shape of the lines of constant velocity near unsteady
separation. (e) Computed lines of constant velocity for an impulsively started circular cylinder,
(|t—ts|)% = 0.38. (f) Shape of the velocity profiles near the separation particle in the middle of
the boundary layer. (g) Scaled and normalized shape of the lines of constant vorticity near
unsteady separation. (k) Computed lines of constant vorticity for an impulsively started
circular cylinder, (|t—tsl)§= 0.45. (i) Lines of constant particle position x in the lagrangian
domain, for times beyond initial separation.

If ¢, is the first time that a stationary point occurs, the Taylor series coefficients
in the rotated coordinate system cannot be completely arbitrary because the
singularity condition may not be satisfied anywhere for 8¢ < 0. On expanding the
condition (3.9) also in a Taylor series it is readily verified that one of the coefficients
x;, and z,, must be zero if 8 = 0 is the first time that a singularity forms; for
definiteness (I,,l,) are reordered such that x;; vanishes. The Taylor series (3.13¢) can
now be reduced to

X~ (e, b)+ a3+ 22y B+ L+ )+ (3.13d)

where only those terms which will turn out to be important at leading order have
been displayed.

VDC discuss flows where some of the coefficients in (3.13d) are zero owing to
symmetries that impose additional constraints (also see below). However, here we
will initially assume that the values of these derivatives can be completely arbitrary
and will in general be non-zero; cf. the values given by Van Dommelen (1981) for the
circular cylinder. There are, however, the following constraints on the signs:

Xog®y <0, 215;%, <O. (3.13e, f)
Phil. Trans. R. Soc. Lond. A (1990)
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The first of these simply fixes the positive [;-direction, but the second is required if
the expression (3.13d) is to be free of stationary points for 6¢ < 0.

Under the above conditions, at times close to separation the lines of constant x in
the lagrangian domain appear as sketched in figure 2a. At the separation time, the
fold at the separation particle s collapses to a cusp. Note that physically these lines
are simply vertical straight lines through the boundary layer, as indicated in the
inset of figure 2a.

Next we turn to the integration of the jacobian (3.5) to find the y-position of the
particles. This jacobian is preserved by the transformation to the new local
lagrangian coordinates, and has characteristics

dl,/dy = —xyly+..., di,/dy =3, B+%,5t+.... (3.14a, b)

A singularity occurs when both right-hand side expressions vanish. Near the point
s, the first right-hand side is zero on a surface approximating the /, = 0 plane, while
(3.13f) ensures that the second right-hand side does not vanish in that plane when
ot < 0.

At t = t, the boundary-layer approximation is obviously no longer valid because y
becomes infinite at the stationary point (see (3.8)). However, at times shortly before
t, a local description of the flow field can be obtained by asymptotic expansions.
Following the guiding principles of Van Dyke (1975), the aim is to scale the
lagrangian coordinates /; and the position coordinates x and y to variables L;, X, and
Y such that in the ‘inner’ asymptotic region the characteristic equations (3.14) are
non-singular. This suggests that the 8¢ term in (3.145), which ensures the absence of
singular points for 8¢ < 0, should be retained. Further, for 6t = 0 we want to match
the solution close to the stationary particle to a solution for y which is regular away
from this point. Thus those terms that ensure the absence of singular points away
from particle &, at time 8¢ = 0, i.e. the [ and [, terms in (3.14), must also be retained.
The appropriate scalings are therefore

I, = |8t Ly, 1, =|8l}L,, (3.15a, b)

F=a—nl,t) = |0lFX, y=|8(7Y. (3.15¢, d)

These scalings suggest that the separation process occurs in a relatively thin strip of
size |3t} moving with a velocity (&, ).

For the scaling (3.15), the analytic solution for Y can be found by integration of
(3.14). The result is

f VP L X)) f VP (3.16a)
where X) = —Luyy(w;, L2 — 63, L —6X), (3.160)

and Ly(X) is the real root of the cubic P. This root is a unique and continuous function
of X since P is a monotonically decreasing function of L from (3.13e,f).

The dependence on the coefficients of the Taylor series can be scaled out by the
transformations (Van Dommelen 1981)

L, = (_2951/95111)%[/;“’ X = _%¢1(_2¢1/x111)éx*> Y= (-9/23, 9"111x§2)% Y
(3.17a, b, ¢)
In terms of the new variables (3.16) reduces to
Y*(LE,X*) ~ (2/A)FEr|m)+ (1/A4) F(¢p|m), (3.18a)
Phil. Trans. R. Soc. Lond. A (1990)
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where
AX*) = B(LE+1))i, @(L* X*) = 2arctan (L¥ —L*)i/A), (3.18b,¢)
m(X*) = 1+3LE/A2),  LEX*) = (X% 4 (14 X524 (X% — (1 + X*2)3),
(3.18d, ¢)

and F($|m) is the incomplete elliptic integral of the first kind. Further terms in the
asymptotic expansion can be found in principle.

The choice of sign of the square roots and the limits of integration, etc., in (3.16a,
3.18a) are determined by the topology of the lines of constant X, as shown in figure 2a.
These lines can be divided into three segments corresponding to three asymptotic
regions. This subdivision is schematically shown by the variation in line thickness in
figure 2a. The lower segments start at the wall and extend upward towards the
vicinity of the separation particle. Because the jacobian is nowhere singular along
these segments, the y-positions of the fluid particles remain finite on the boundary-
layer scale, i.e. the scaled coordinate Y is small. Therefore, these lower segments yield
a layer of particles at the wall with a thickness comparable to that of the original
boundary layer; this is shown schematically in figure 10.

Along the central segments, the lines of constant X pass through the vicinity of the
separation particle. Here the y-position of the particles grows rapidly, and is given
in scaled form by (3.18). Thus the central segments cause the intermediate, thicker
layer illustrated in figure 1b. The topology of the central segments in the lagrangian
domain, figure 2a, determines the choice of sign in (3.16a, 3.18a). From (3.13¢, f) and
(3.14a, b) it follows that on integrating upwards, L, increases from large negative
values towards L,(X). Since Y increases, along this part the negative sign in (3.16a)
applies. At position L, the lines of constant X turn around in the lagrangian domain
and L, again tends to — o0 ; along this second part the positive sign in (3.16a) applies.

Along the third segments, the lines of constant X proceed upwards toward the
external flow. As in the lower segments, the jacobian is no longer small here. Thus
the changes in y are finite on boundary-layer scale, and the third segments cause a
layer of particles with a boundary-layer scale thickness, atop the central region (see
figure 1b).

Taking the boundary-layer scaling of the normal position into account, it follows
that the separation structure is one in which the boundary layer divides into a
central layer of physical thickness proportlonal to Re™3|8t|7%, between two ‘sandwich’
layers of thickness proportional to Re~ :,

3.5. Interpretation

We now turn to the physical interpretation of these results. The boundary-layer
thickness is asymptotically determined by the position of the upper particle layer in
figure 1b; letting L§ —— oo along the positive branch of (3.18a), we obtain from (3.16,
18) the scaled thickness of the expanding central region near separation as

dL*

Ly _ 4
YHEX*) = 2f XI5 <P m). (3.19a, b)

The function Y**(X*) gives the general shape of the boundary-layer thickness, and
is illustrated in figure 2b. Figure 2¢ is a plot of boundary-layer displacement
thickness at different times for an impulsively started circular cylinder calculation
with u, = sin (x) for ¢ > 0 in (3.2b) (Van Dommelen 1981). In agreement with the
scaling (3.15d), the numerical calculation suggests that the displacement thickness

Phil. Trans. R. Soc. Lond. A (1990)
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becomes infinite at separation ; further, the two graphs are in qualitative agreement
regarding the shape of displacement thickness near the separation particle. While a
quantitative comparison is not possible in this case owing to the difficulty of
obtaining accurate numerical solutions when |8¢]% is small, confirmation of the scaling
(3.15d) is given by Peridier & Walker (1989) in their lagrangian calculations of
vortex-induced separation. They assume that the maximum displacement thickness
is proportional to |8f]™, and show that M = 0.253 +0.003.

The particle propagation velocity # that causes the accumulation of particles at
the separation line is given to leading order by (see (3.13, 3.15))

&= a—a(E, 1) ~ |St)Fa, L. (3.20)

To describe this in the more familiar eulerian coordinates, the transcendental
relationship (3.18) must be inverted. The inversion has been performed numerically.
Contours of L¥, or equivalently contours of # or &, in the (X*, Y*) plane are illustrated
in figure 2d. The topology of this figure for |5t| &~ 0 is close to the computed lines of
constant velocity presented by Van Dommelen (1981) for finite |5¢, reproduced here
as figure 2e.

Another point of interest is the shape of the velocity profiles. According to (3.20),
as separation is approached the Eulerian velocity profiles develop a large flat region
of nearly constant velocity near a local maximum or minimum, see figure 2f.
Confirmation of both the flat, almost constant, region and the turning point for the
impulsively moved cylinder problem is given by Van Dommelen & Shen (1980).
Peridier & Walker (1989) also find an almost constant region in their velocity profiles
for vortex-induced separation, although, rather intriguingly, there is no clear turning
point; indeed, their profiles seem closer to an inflection point at & = &, ¢ = ¢,.

The shapes of the velocity profiles in the sandwich layers at the edges of figure 2f
cannot be found from asymptotic analysis because they depend on the precise details
of the earlier evolution (see the remarks below (3.21)). It should also be noted that
while there is a local minimum (or maximum) in the velocity profile at separation,
the existence of such a turning point is not necessarily an indication that separation
is about to occur. For example, for the impulsively started circular cylinder, a
minimum in the velocity profiles develops quickly, after one-sixth diameter motion,
yet separation occurs much later, after three-quarters diameter motion (Van
Dommelen & Shen 1980).

A more useful indication of the start of separation is the rapid transverse
expansion of the lines of constant vorticity near the turning point in velocity. This
occurs because the above analysis is inviscid to leading order, so that the vorticity
lines follow the motion of the boundary-layer particles. The corresponding
asymptotic topology of contours of 0L¥/0Y* is shown in figure 2¢, which is close to
the computed vorticity lines presented by Van Dommelen (1981) for a time near
separation (see figure 24).

So far, the analysis has concentrated on the structure of the boundary layer in the
rapidly expanding central region. The asymptotic structures of the upper and lower
sandwich layers still need consideration. The displacement of the upper sandwich
layer by the central region is given by (3.19) in scaled form, and it is convenient to
use the Prandtl transformation to account for it as a shifted transverse position
coordinate :

J=y—y (x1), (3.21a)

here to leadi d )
where to leading order @ t) ~ [V (X)), (3.21h)
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The structures of both layers then take the form of regular Taylor expansions. In
terms of eulerian coordinates, they are

(&,9) = X ™S (U, (), Viy(y)) and (&) = B 8 (U (F), Uiy (7))
mr=0 mr=0
(3.21¢, d)

respectively, where the sums run over the non-negative integers. The u},, (m, > 0,
r = 1) and the v%,, (m,r = 0) are determined in terms of the ut,, but the latter
functions are indeterminate owing to the dependence of the solution on earlier times
(Van Dommelen 1981). The uf, must, however, satisfy the boundary conditions
(3.2a) at the wall, and match both at the outer edge of the boundary layer (see (3.20))
and with the central inviscid low-vorticity region (see Van Dommelen (1981) for the
precise conditions). Similarly, the solutions in the two sandwich layers and the
central layer can be shown to match with a boundary layer of standard width as
3.6. Subsequent stages

Naturally, the singularity structure derived here will not remain asymptotically
correct arbitrarily close to the time of actual singularity ¢ = ¢;, because the normal
velocity above the central inviscid region becomes infinite when the singularity
forms. To be more specific, at times close to ¢, the boundary layer thickens to
O(R™#|31|7%) in a region with a streamwise extent O( |8]%). In moving past this locally
thickened region of the boundary layer, the fluid above the boundary layer
experiences a viscous displacement velocity of O(R™#|51|7%). Just above the boundary
layer, there is an asymptotic region, ‘an upper deck’, where this velocity
perturbation is reduced to zero as a result of an induced normal pressure gradient.
The perturbation in this region is irrotational, and hence the induced pressure-
gradient perturbation is found from Bernoulli as

Ap, = O(R™|31]7%). (3.22a)

When this induced pressure gradient is as large as the Z,,-accelerative forces in the
expanding central region, i.e. from (3.15¢)

Ap, = 0(31] ™), (3.22b)
there is a ‘triple-deck’ interaction. This occurs when
8t = O(Re™ 1), (3.22¢)

at which time the scaled boundary-layer displacement thickness has increased to
O(Re®) (Elliott et al. 1983).

Confirmation of the scaling (3.22¢) from accurate solutions of the Navier—Stokes
equations is not yet available. However, Peridier & Walker (1989) have presented
solutions of the interactive boundary-layer equations for a range of large Reynolds
numbers. They find that a singularity forms even with the interactive effect included,
say at ty(R). On assuming that the difference in singularity times is proportional to
R~ they find from a regression analysis that M = 0.190+0.024. Since 2/11 = 0.182,
this suggests that the singularity time is shifted by an amount consistent with the
scaling (3.22c¢).

Their results also show that at B = 10° and R = 10® the singularity time is changed
by 35 % and 10 % respectively. This suggests that the relatively small power of the
Reynolds number in (3.22¢) can lead to large differences between theory and
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experiment at moderate Reynolds numbers. For instance, the numerical calculation
of Van Dommelen & Shen (1980) for the impulsively started cylinder predicts
separation for infinite Reynolds number at a position 111° from the front stagnation
point, at a time ¢,(c0) = 0.75D/U where U and D are the velocity and diameter of the
cylinder. On the other hand, experiments (for example, Bouard & Coutanceau 1980;
Nagata et al. 1979; Nagata et al. 1985) and numerical solutions of the Navier-Stokes
equations (for example, Collins & Dennis 1973 ; Ta Phuoc Loc & Bouard 1985; Pepin
1990) at Reynolds numbers less than 10, suggest that the boundary layer breaks
away from the surface at significantly greater angles and at later times; although it
is of course difficult at finite Reynolds numbers to say exactly when separation has
occurred. However, if we hypothesize that the experimentally observed secondary
vortex forms within an asymptotically short time of ¢{,(c0) (as yet there is no firm
supporting analysis for this assumption), then the trend is towards the theoretically
predicted results as the Reynolds number increases; in particular the time, ¢,, at
which the secondary vortex forms decreases towards ¢t,(co0): Ut,/D = 1.49,1.00, 0.94,
for R = 550, 3000, 9500 respectively (F. Pepin, personal communication). More
detailed numerical calculations for R > 10* are needed to determine how large the
Reynolds number needs to be for the separation time to be within, say, 5% of its
asymptotic value.

Another problem for which accurate numerical solutions are still required is the
description of the flow on the 8 = O(Re ) timescale (see Elliott et al. (1983) for a
formulation). One of the main numerical difficulties in this problem arises from the
unbounded matching conditions at the edge of the central inviscid region. Rather
than trying a direct attack, in the next section we will address a considerably more
attractive interactive problem for a case in which the separation is ‘weak .

Also, in lieu of a solution for & = O(Re’%), we note that a number of related
interactive problems have been studied. For instance, Cowley et al. (1988) (see also
Cowley & Van Dommelen 1990) have obtained numerical solutions to the viscous
triple-deck equations which are in line with the suggestion of Tutty & Cowley (1986)
that solutions to these equations might terminate in a finite-time singularity. In
particular, for a growing Tollmien—Schlichting wave they find that, while the
pressure remains a continuous function, its spatial derivative and the wall shear
become unbounded at a finite time. Their asymptotic analysis and the simultaneous
work of Smith (1988) is in broad agreement with the numerical results.

Further, as mentioned above, Peridier & Walker (1989) have performed interactive
boundary-layer calculations using lagrangian coordinates. They find singularities
with the same qualitative form as Cowley et al. (1988) and show that if the maximum
wall shear is assumed proportional to ({,(R)—¢) ™, then a regression analysis yields
M = 0.252 £ 0.016; this is consistent with one of the singularities presented by Smith
(1988).

All these results suggest that while a ‘triple deck’ type interaction modifies the
form of the classical boundary-layer singularity, it is not sufficient to eliminate finite-
time singularities from the interactive equations. In an attempt to understand what
happens once the second singularity has developed, i.e. assuming one forms on the
R~ timescale, Smith (1990) has proposed an analysis for an even shorter asymptotic
timescale.

As yet no asymptotic solutions have been presented which yield a description of
the flow for finite times beyond ¢, (but see Sychev (1979), Van Dommelen & Shen
(1983 b) and Elliott et al. (1983) for interactive models of upstream slipping separation
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points). However, we note that accurate lagrangian solutions of the classical
boundary-layer momentum equations can be found for finite times after separation
without difficulty (see, for example, Van Dommelen 1990); the question then arises
whether these solutions have any relevance at all. At times beyond separation,
vertical lines through the boundary layer appear in lagrangian space as shown in
figure 24 rather than figure 2a (see VDC for similar figures when the separation is
symmetric). Although y is indeterminate for the shaded particles, the continuity
equation can still be integrated along all lines of constant x that start at the wall; a
singularity develops only on the line passing through the saddle point in figure 2.
However, the physical relevance of such solutions is doubtful, especially for all those
lines of constant x that contain particles that have at some time been at a position,
Zyrs, Where the stationary point condition (3.9) was satisfied. These lines correspond
to a growing band towards the right of the line through the saddle point in figure 2%.
Additional restrictions would exist if the interaction region accelerates particles to
high streamwise velocity or induces an appreciable pressure perturbation at finite
distances. Yet such effects would have to preserve energy and the centre of vorticity
(Van Dommelen 1981).

3.7. Three-dimensional compressible flow

The analysis described so far generalizes to the case of compressible, three-
dimensional flow through the inclusion of an energy equation and a second
momentum equation in the z-direction along the wall. Both these equations are also
independent of the normal position y of the particles (Shen 19785; VDC). The
regularity hypothesis is now that the projected surface positions x and z, plus the
density p, are regular functions of the lagrangian coordinates & = (§,%, {) and time ¢
(it is assumed that no shocks are present at the point where separation starts).

The continuity equation becomes

p(é>t)H(x,2)J(x,?/, Z) =p(é’O)H<g’ €>’ (3'23)
where J is the jacobian, H(z,z) = h,(x,2)hy(z,2), and h; and h, are the metric
coefficients evaluated on y = 0 for the coordinates x and z respectively. The condition
for a singularity to form is that the lagrangian gradients of « and z become parallel,

e Ve = A, V,2 (3.24)
for some constant A,.

The physical description of separation given in §2 is again valid in three
dimensions ; the separation particle is squashed infinitely thin in the direction of the
skewed coordinate n = x—A 2. A generalization of the MRS conditions to three-
dimensions can also be shown to hold.

3.8. Three-dimensional asymmetric separation

The most general form of separation occurs if the initial singularity develops at a
point in the flow where there are no symmetries. An analysis based on expanding the
position coordinates x, z, and the density p, in Taylor series can again be performed
(VDC). The singularity is found to have a quasi-two-dimensional structure stretched
out along the surface line

T =%, t) = A, 2+ AP 22+ AP 22+ AP 81z, (3.25a)
where the origin is taken at the separation particle,
T=a—x(,t), zZ=rz—2(E1), (3.25b, ¢)
Phil. Trans. R. Soc. Lond. A (1990)
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Figure 3. Schematic contours of constant boundary-layer thickness in
three-dimensional asymmetric flow.

and the A9 are constants that can be calculated from the Taylor series coefficients
for # and z. The scalings corresponding to (3.15¢, d) are

T—Z (7 0) = |SIFX, z=I|3FZ, y=I|8t"Y. (3.26a, b, c)

Hence separation occurs in a relatively thin strip of width |3 straddling a segment
of the oblique, curved separation line & = Z,(z,t) of length z = O(|3t}?).

Note that once the coordinates have been suitably skewed, the |8¢ scalings for X
and Y are the same as for the two-dimensional case. Moreover, the previous figure
2d, g can be interpreted as contours of constant velocity (or density) and constant
vorticity respectively for three-dimensional separation after a suitable scaling of the
coordinates to remove the dependence on Z (VDC). Similarly, by redefining 4, m and
other scaling coefficients, the displacement thickness for three-dimensional sep-
aration can be put exactly into the form (3.19). From such expressions it is possible
to calculate contours of constant displacement thickness. Asymptotically they have
the form of a crescent-shaped ridge. The crescent shape is long and thin because the
(x—7,) lengthscale is asymptotically shorter than the z lengthscale. Figure 3 is an
illustration of how contours of displacement thickness might look at a finite time
before separation (it was drawn by taking |8/ = 0.06 and unit values for various
coefficients ; see VDC for further details). We also note that because the separation
is quasi-two-dimensional, a ‘triple deck’ type interaction develops with essentially
the same scalings as before, for example see (3.22¢). In particular, in the central
interaction problem, the coordinate z, which has an interaction length scale O(Re ),
appears only as a parameter.

3.9. Separation on a symmelry line

While the description in the previous subsection is accurate when separation
begins at an asymmetric point in the flow, examples of separation occurring on a
symmetry line exist (see, for example, Cebeci et al. 1984 ; Ersoy & Walker 1987; Xu
& Wang 1988; Wu & Shen 1990). For instance, separation first develops on a
symmetry line in the case of a spheroid at a relatively small, aligned, angle of attack.
Yet the separation structure is only a special case of the one described above for this
flow, as well as others in which the direction that the separation particle shortens is
aligned with the symmetry line.

This changes for another type of symmetric separation, in which the separation
particle is being compressed towards the symmetry line. For instance, such finite-
time symmetric singularities are generated at the equator of an impulsively rotated
sphere (see, for example, Banks & Zaturska 1979), at the apex of an impulsively
heated horizontal circular cylinder (Banks & Campbell 1982; Simpson & Stewartson
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o(1)

A T i i n aeg
<« 5 >
Figure 4. Schematic of asymptotic regions for an unsteady boundary-layer collision. At a

symmetry line y* ~ |8¢]2; at an axis for flow with swirl y* ~ |8t7!; at an axis for flow without swirl
y* ~ 18t

19825), at the inner bend of a uniformly curved pipe through which fluid starts to
flow (Lam 1988) and at the stagnation points on a two-dimensional symmetric body
in oscillating flow (Riley & Vasantha 19895).

The structure of this type of singularity on the symmetry line was first identified
using eulerian coordinates by Banks & Zaturska (1979) and Simpson & Stewartson
(1982 a), while Van Dommelen (1981, 1990) demonstrated that the same results could
be recovered by a lagrangian analysis similar to the one described previously.
Further, the simplicity of the lagrangian approach enabled VDC to extend the
description of the singularity structure a little distance off the symmetry line. They
were also able to consider a more general form of symmetric separation in which the
singularity develops at a point rather than along the entire symmetry line, e.g. as
would occur in starting flow through a curved pipe with non-uniform curvature.

This symmetric singularity is not reducible to the asymmetric one, but does have
a similar structure. If the coordinates x and z are perpendicular to, and aligned with,
the symmetry line respectively, then scalings corresponding to (3.15¢) and (3.26a, b)
involve the same powers of |8¢|. Further, the scaled displacement thickness can again
be written in terms of an elliptic integral. However, the y-position of the separation
particle, and hence the displacement thickness, increases more rapidly, in particular
as [3¢]7%; these scales are illustrated schematically in figure 4.

The most significant difference between this singularity and the asymmetric one
concerns the velocity in the central expanding region. For the symmetric singularity
this is much larger than the velocity in the upper and lower vorticity layers, whereas
the opposite is true for the asymmetric singularity (at least in the frame moving with
the singularity). As a result, the pressure gradients induced by the rapidly increasing
displacement thickness are first felt in the vorticity layers. Since it is the central layer
which is responsible for the growth in boundary-layer thickness, it appears that the
first asymptotic rescaling will not lead to an ‘interactive’ effect that inhibits the
development of the singularity. Instead, it is likely that the singularity will continue
to be driven by the flow in the central layer, while significant changes occur in the
upper and lower layers.

3.10. Numerical verification of symmelry line separation

As indicated above, until a mathematical proof is available, verification of the
regularity hypothesis rests on the properties of numerical solutions. One such
calculation has been performed by Lam (1988) for impulsively started flow through
a uniformly curved circular pipe at large Dean numbers (an idealized model of aortic
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flow). In suitable non-dimensional coordinates, and assuming that the curvature of
the pipe is much larger than the radius of the cross section, the governing equations
are (see, for example, Pedley 1980)

w=2&, u=sin(x)(wi—w?)+Diu, (3.27a, b)
w=2z w=w,+D}w, (3.27¢, d)

where x measures distance around the surface of the pipe from the outer bend (the
inner bend is at x =), z measures distance down the pipe, v and w are the
corresponding velocities, w,(¢) is the inviscid velocity in the central region of the pipe,
and D, is the eulerian derivative. If

=2 n=y at (=0, (3.28a, b)

where y = 0 defines the surface of the pipe, the jacobian J(x, y) again satisfies (3.5),
while D, u is still given by (3.6b). The problem is fully specified by the initial and
boundary conditions

u=0 w=w, at t=0+, (3.29a)

u=v=w=0 on =0, and -0, w-w, as np—>00. (3.290)

These equations have been solved numerically for the choice w, =1 by Lam
(1988). Following Van Dommelen (1981) coordinate stretches were used in both
lagrangian directions. The one in the §-direction was chosen so that the tendency of
fluid particles to move towards the inner bend, which has the effect of decreasing
resolution near the outer bend at larger times, was compensated for by initially
skewing the particles towards the outer bend. In the # direction a # scaling was used
to expand the Rayleigh layer that develops at ¢ =0+, and the semi-infinite
coordinate range was transformed to [0, 1] using an arctan mapping.

The flows on the symmetry lines £ = 0 and £ = © were obtained by expanding «,
u, w in Taylor series in § and (§—m) respectively. The resulting system of parabolic
equations for the leading order coefficients depends only on 5 and . These equations
were marched forward in time using a second-order finite difference scheme. At each
time step the nonlinear difference equations were solved by Newton-Raphson
iteration.

Away from the symmetry lines, the governing equations were again discretized by
second-order central differences; we note that it was not necessary to skew the finite-
difference molecules for the first-order spatial derivatives in (3.27b,d), as Van
Dommelen (1981) needed to do for flow past a circular cylinder (see also Peridier &
Walker 1989). For this two-dimensional problem it was not possible to solve the
difference equations by a Newton—Raphson iteration owing to the size of the
jacobian matrix. Instead a modified alternating direction implicit iteration scheme
was used in which a partial Newton—Raphson iteration was performed along
successive lines of unknowns in the spatial domain. The number of iterations
necessary was reduced by first making a ‘leapfrog’ step to obtain an initial guess for
the solution. Lam (1988) gives further details of the method.

Once x was calculated, y was found by numerically solving the jacobian equation.
Owing to the singularity that develops, this was done by rewriting (3.5) in the form

dy/dy = x4, (3.30)
which is valid on lines of constant z. This equation was integrated with a
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Runge-Kutta scheme using equally spaced steps in y; interpolation was used to find
x ; as necessary.

Figure 5a is a graph of min,, |V, x| against time (in fact, because the separation
singularity develops on the symmetry line of the inner bend it is equivalent to a plot
of ming_, ,x ). Clearly V.x tends to zero linearly in time; we conclude that for
impulsively started flow through a curved circular pipe, separation starts at ¢ = {, &
2.813. The asymptotic scalings predicted for [8¢| < 1 (see figure 4) can be confirmed
by plotting a position in the upper vorticity layer as (y — 3+ ¢)|3t[* against (1t —x)|8¢| %,
as in figure 56; here y = 10 and ¢t = 2.7, 2.75, 2.8 (the constant part —#+c¢, with ¢ =
5.5 was included as a first approximation to account for higher-order corrections in
the asymptotic expansion for small |3¢]). The singularity structure is verified because
the plots collapse on to each other.

3.11. Axisymmetric separation

Another class of separation singularities is rotationally symmetric about the
separation point. For example, singularities develop after a finite time on the axis of
a spinning disc or sphere whose direction of rotation is impulsively reversed (Bodonyi
& Stewartson 1977 ; Banks & Zaturska 1981 ; Stewartson et al. 1982 ; Van Dommelen
1987), and at the apex of a sphere which is impulsively heated (Brown & Simpson
1982; Awang & Riley 1983).

A lagrangian analysis similar to that above can be performed for this symmetry as
well (VDC). While the precise structure of the separation singularity depends on
whether or not the flow has swirl, both types of singularity have qualitative features
in common with each other and with the symmetry line singularity described above;
for example the velocity in the central expanding region is much larger than that in
the surrounding vorticity layers. The lateral scaling of the singularity is again |8t
but the displacement thickness increases like |8f]' and |8¢: for flows with and
without swirl respectively (see figure 4). The results on the axis can also be obtained
by eulerian analysis (see above references), however, the singularity structures
slightly off the axis were first obtained by the lagrangian approach.

4. Asymmetric marginal separation
4.1. Introduction

In the previous section we mentioned the two-dimensional unsteady interaction
problem which develops when the pressure perturbations induced by a rapid growth
in boundary-layer thickness become too large to be neglected. As an alternative to
studying this difficult problem, a formulation in which the interaction is in some
sense ‘weak’ is presented below.

The work in this section was motivated by the observation that if a circular
cylinder of diameter D is oscillated perpendicular to its axis through an amplitude
U/Q, then there is a qualitative difference in the flow depending in the size of the
Keulegan—Carpenter number, KC = 2rU/QD. (This is essentially an inverse Strouhal
number.) In particular, for KC < KC,~ 1.3 a steady streaming effect induces
boundary-layer collisions at the stagnation points, but no ‘vortex shedding’ occurs
from the surface of the cylinder (see, for example, Bearman et al. 1981; Sarpkaya
1986). Note that although such flows have usually been described as separation free,
in our terminology the boundary-layer collision is the result of a symmetry line
separation ; the initial development of this symmetric separation singularity has been
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Figure 5. Boundary-layer collision in a curved pipe. () min, , |V, 2| against time. (b) Scaled
boundary-layer thickness for various times.

studied by Riley & Vasantha (1989b). For KC > KC,, eddies are shed from the
surface of the cylinder, at least while the flow remains two-dimensional (see Tatsuno
& Bearman (1990) for a more detailed description of this flow and its relevance to
offshore structures). For (KC'—KC,) <€ 1, we would expect the vortex shedding to be
‘weak’, and the question then arises whether a theoretical description of the flow is
possible.

In fact from a theoretical standpoint, the problem where the cylinder has been
oscillating ad infinitum is not especially attractive because of the complications
arising from the boundary-layer collisions at the stagnation points. A natural
alternative is to consider the start-up problem, or more generally a case where the
cylinder is moved (possibly unidirectionally) only for a finite time. As will be
indicated below, the nature of the weak separation for such problems is not as simple
as first thought. A more attractive possibility may be the case of separation induced
by a vortex impinging on a boundary layer which experiences an otherwise
favourable pressure gradient (cf. Doligalski & Walker 1984). A strong vortex will
induce separation, whereas if it is sufficiently weak the flow is expected to be
separation free.

For the above flows, the boundary-layer solution depends on a variable parameter
a (the Keulegan—Carpenter number, the time that the cylinder moves, the strength
of the vortex, etc.), in addition to the lagrangian coordinates and time. We assume
that for values of @ less than some minimum value, say ag, no separation occurs, but
that for a > a4 separation takes place. In the spirit of Stewartson et al. (1982) we
call the separation for ¢ ~ a, marginal.

Previous. studies of unsteady marginal separation include the work of Ruban
(1982a), Smith (1982) and Smith & Elliott (1985). For the most part these authors
considered unsteady small perturbations imposed upon flows which were already
close to the steady marginal separation condition identified by Ruban (1981, 1982b)
and Stewartson ef al. (1982). In addition, the timescale of the perturbations was slow
compared with the reference time interval D/U (but, see Elliott & Smith (1987) for
a discussion of a shorter timescale problem which may develop subsequently).

Our aim is to provide a theoretical description of marginal separation when the
flow starts far from separation, momentarily approaches it, and then recovers to a
strongly attached state over an O(D/U) timescale. However, a complication that
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arises is whether at the critical value of the parameter a,, separation occurs at a finite
or infinite time. We will show that both cases seem possible, and study possible
structures for representative flows.

When the marginal separation occurs at a finite time, we hypothesize that the
classical boundary-layer solution is a regular function of the parameter a, as well as
being a regular function of the lagrangian coordinates (£, %), and the time ¢:

x=uwf,n;t;a). (4.1)

On this assumption, we will find a non-interactive description of marginal separation
when a & a,; this analysis will then be extended to include interactive effects. As at
the start of §3, the flow is taken to be two-dimensional and incompressible, although
generalizations are straightforward.

4.2. Non-interactive asymmetric marginal separation

The analysis of the marginal separation singularity is similar to the two-
dimensional asymmetric singularity described in the previous section. As before, the
existence of a singularity is indicated by the development of a stationary point in
x(§,m;t;a) at some position S:

re=x,=0 at S= (1l a). (4.2a, b)

In this case the transformations that simplify the Taylor series expansion for x
about S are essential, and so these will be described in detail. Similar to the case of
non-marginal separation, we shift the origin of the lagrangian coordinate system to
the point S, and then rotate the axis system to eliminate the mixed second-order
lagrangian derivative. The shifted and rotated coordinates are denoted by (lcl, Icz, f,d),
and ‘*’ will be used when dependent variables such as & are considered a function
of these coordinates. As before, if f, is the first time that a singularity forms, the first-
order derivatives and all but one of the second-order derivatives at S must be zero:

92‘,51 = 32',32 = 93,31,51 = 93,51,52 = 0. 4.3a, b, c, d)
The remaining second-order derivative, &; i, is assumed not to be zero. If it were
zero all three second-order derivatives would vanish in the original coordinate
system, in addition to the two first-order ones. Those five conditions seem too
restrictive for four independent coordinates, and they are not required to obtain
marginal separation.

Unlike the previous section, a second transformation is now helpful First, we note
that since &z z is non-zero, the location where the derivative & i, vanishes defines a
regular curve Ic = lczs(lc1 :f;d). We shift the Ic ‘axis to this curve by the
transformation p .

by = ey oy 13 ). (44)
The result is that the region where the derivative 2 & i, vanishes has been simplified to
the curve lc = 0. Hence a smgularlty occurs when x,k (ky, 0 t a) vanishes.

The requirement that there is no separation for negatlve values of'd imposes an
additional condition that dlstmgmshes marginal separation from the non-marginal
case. An particular, if the derivative &y fwere non-zero, a time ¢ could be found where

(lcl, 0; t; d) was zero for small values of 4 of both signs, in contradiction of the
assumptlon of marginality. The restriction

Zp =0 (4.5)
Phil. Trans. R. Soc. Lond. A (1990)
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is therefore necessary (and in fact must be so even if #; ; was zero, since in that case
the axis system could be rotated to satisfy (4.5)).
The Taylor series for the streamwise particle position x has thus been simplified to
N
;;fz+x,gla»a) ky+...,
(4.6a)
where only those terms which turn out to be signiﬁcant near the separation particle

have been retained. The followmg requirements on signs are needed so that there is
no separation for negative a:

=14 o 14 A 14 2, (1A
—40,0:1:d) SR A A k + (5%

lll 11 1

A9,

A A A
Tp ik xk “—xk £6> 0, Zpgag s <0. (4.60, c)
Some care is needed with the first condition, because the second-order time
derivatives must satisfy certain restrictions if # is to be a solution of the boundary-
layer equation; in particular
& o= 0. 4.7)
To check consistency we note that the transformed derivatives can be expressed in
terms of the original ones as

A‘a:f-—" ’,“;‘ﬂ_/‘ xk}t‘,«ﬂ 48 b
VL bk, = Xk Vh T VR R T T R Ry Ry (4.8, )
xk2k2
Z 3
A oA kot A kot A 2 o
Tp =g 2 T T T Rk Ry TEE = T (4.8¢, d)
Foy By ol

Since the boundary-layer equation does not restrict the zeroth- and first-order time
derivatives, it appears that the conditions (4.66, c¢), can, in principle, be met. See the
next section for an example where a similar restriction cannot be satisfied.

An important property of the flow for this type of marginal separation can now be
deduced from (4. 60) and the expression for the vorticity near the point S at the time
of separation ¢ = d=0:

) .
Lron Tr 7oA 2
1. [ 4 12 oA a [ VEok, A £y,
W~ —awsz(wlél;:l;:lkl 2og g ok | | ag gl k) ) (4.9)
T f Liof

This expression is everywhere single-signed except at the separation point itself (for
definiteness we assume that it is negative), and thus the velocity profile at marginal
separation must have a vertical inflection point. In addition, because diffusion acts
to smooth out the vorticity distribution, we conclude that at times before marginal
separation there must be an internal region of positive vorticity, indicated by a
negative slope in the velocity profile.

To write, the results in a standard form we now make a third, trangformation in
which the lc -coordinate is shifted to the locatlon kls where & Rk (klg, 0; t d) vanishes :

I = lc ls(t d). (4.10a)
We also subtract the motion of the origin from the streamwise position :
F=d—n, xyl:d) =74k 0:6;4). (4.10b, ¢)

Summarizing the above three transformations, the total transformation consists of
the initial shift and rotation of the lagrangian coordinate system followed by

o= ky—lky(f5d), 1, = ky—hyy(ky;1:6), 7=a—ayl;d). d.1la,b,ec)
Phil. Trans. R. Soc. Lond. A (1990)
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Unsteady boundary-layer separation 365

These transformations leave the jacobian unchanged, as well as the lagrangian
expressions for the eulerian partial derivatives in the boundary layer:

L) Sudfond]

—(y, L=y, L 9 _z, Y, 4.
e \ug, TYu ) 8y T \Pud, T e, (4.12a, b)

The major effect of the transformation is the change in expression for the convective
derivative:

Y 2o 2 o
f_ —a_t" kls’t all kZS,t al2 (4:13)

The advantage of the above transformations is that they significantly simplify the
Taylor series expansion for x in the neighbourhood of separation:

x~ 5T BT, B+ (flldd"‘%@lft‘fz) L+.... (4.14)

Also, by a suitable choice of the positive Z and /; directions, and using (4.6b, c), we
can assume
>0, %,,>0, ;>0 z,<0 (4.15a, b, c, d)

4.3. Non-interactive vertical particle position
Next we turn to the non-interactive solution of the continuity equation. This
solution is almost identical in form to the one for non-marginal separation derived
in the previous section, although the scalings are slightly different. Similar arguments
to those leading to (3.15) suggest that an appropriate scaling is

l, =¢ly, ly=¢l, =T, (4.16a, b, c)
d=c’4, T=¢€¢*X, y=e‘%Y, (4.16d, ¢, f)

where the artificial small parameter ¢, chosen so that 4 = O(1), will prove useful
when considering the interactive case. We see that the separation region scales as
(®,y) = O3, %), instead of O(f%,{ %) as in (3.15¢, d). Nevertheless, in the limiting
process € — 0 the scaled displacement effect of the inner region is essentially the same

as for the non-marginal case of §3:

%Y* ~t JLO dzL ,
o, V28, X =530, L — 5T, 5 TP+ 3y g A) L

Y— (4.17)

where, as before, L, is the root of the cubic polynomial in the denominator, the choice
of sign is as explained below (3.18), and 1Y*(X) is the value of the positive integral
when L, = — c0. Note that for coefficients satisfying (4.15), solutions can be found for
all scaled times 7"if A < 0, but that if 4 > 0 then a singularity of the form discussed
in the previous section develops at 7' = —+/(—2%, ;A/% ).

4.4. Interactive streamwise particle position

We now turn to the description of the interactive effects induced by the large
displacement represented by the scaling (4.16f). Clearly the asymptotic region that
generates the large boundary-layer displacement effect is the rapidly expanding
‘central’ region in the vicinity of the stationary point. Further, the scalings (4.16a—)
imply that 0/0, > (0/0f,0/0l,); thus in that region the convective derivative given by
(4.13) can be approximated by the 0/0/, derivative term. In other words, only a spatial

Phil. Trans. R. Soc. Lond. A (1990)
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derivative remains; owing to the relatively rapid motion of the particles through the
inner region, the pressure gradient appears quasi-steady to them.

The first interaction effects are expected to occur when the O(R |e| 2 induced
pressure gradient (cf. (3.22a)) becomes comparable to the O(1) particle acceleration
near the stationary point (cf. (3.226)). The resulting scahngs in the central region are
agaln of the form (4.16), provided the parameter ¢ is identified as R, However, it
is now appropriate to include a pressure expansion of the form

P~ Poll; &)+, X+ P), (4.18)

where P is the pressure disturbance induced by the rapidly growing boundary-layer
thickness.
In the central region, the leading-order asymptotic approximation to the
Navier—Stokes x-momentum equation is
k.2

2:>t

~ K3 T~ Py (4.19)

284

where we have identified the constant term from the non-interactive solution which
is valid for large negative 7. The leading order approximation to the normal
momentum equation shows that P is again independent of Y, while the continuity
equation remains

X, Y, ~X, ¥, =L (4.20)

The first integral to the momentum equation (4.19) is
X%, =27, , (X—QP—C(L,;T;A)), (4.21)
where Q = 2(w,, k3,) " (4.22)

Further, it seems that a general functional form for €' can be excluded because of the
curved topology of the lines of constant X in the lagrangian domain. In particular,
except for special choices of €, the limit L, -+ co introduces two internal asymptotic
regions into the downstream non-interactive boundary layer. One of these regions
corresponds to particles emerging from the interaction region, but the other has
particles entering it and there is no apparent justification for such an asymptotic
structure there. Based on the assumption that the second term in the expansion of
the non-interactive region is O(R%), we conclude that the integration constant C
which matches the non-interactive solution is given by

Ly T3 A) = 7,y L3+ (8, T+ 3, 4 A) Ly (4.23)

4.5. Interactive vertical particle position

With the streamwise particle position known, we can now integrate the continuity
equation (4.20) using (4.21-4.23) to find the displacement effect of the central region
(cf. (4.17)):

dL

Y—1 . (4.24
wx”{x Rty g ey vV YR

where Y%, etc., again have the same general form as in §3. In terms of (3.19a), the
total displacement effect of the central region felt at the top of the boundary layer
can be written in the form

= (1/yB) Y** (X = QP /), (4.25)
Phil. Trans. R. Soc. Lond. A (1990)
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where a=3T 5, V=V GT,%,,) (4.26a, b)
are constants while

B =1 5/, ) T?+( szla/lezlzl )4]. (4.26¢)

Since the function Y** can be stored in table form, the numerical solution of the
central region requires no more than table look-up. In contrast, the finite difference
solution of the non-marginal central region is awkward because of the irregular
behaviour of the flow near the edges of the region (Elliott et al. 1983).

4.6. Bordering vorticity layers

The analysis so far has determined the asymptotic solution in the rapidly
expanding region near the stationary point. As in the non-marginal, non-interactive
case of §3, the boundary-layer particles below the central region form a non-
separating vorticity layer at the wall, while those above it form an ejected vorticity
layer.

For the lower vorticity layer, we propose the scalings

Ly ly=1b(:ld)+eL,, z=¢X, y, (4.27a, b, ¢, d)
in which /, is the marginal but non-interactive prediction for the location where
Z = 0. These scalings imply that the pressure variations across the wall layer are
negligible, while the O(e®) velocity perturbations parallel to the wall behave
invisecidly. The slip-velocity generated by these perturbations means that a viscous
wall layer must also be present with the scalings

L=1 (a)+el,, 1=1(;:d)+eL,, T=6X, y=éY,
(4.28a, b, ¢, d)

where [, ( @) is the non-interactive value of [, at the location on the wall where
z=0. No further details of the solution in this region are given since this layer has
no leading-order effect on the separation processes.

In the upper vorticity layer, an expansion similar to the one for the wall layer
holds (cf. (3.21)):

Lo =1 (:ld)+eL,, T=X, y=e?Y +j. (429a,b,c, d)

The streamwise momentum equation again behaves inviscidly, and the normal
momentum equation predicts that the pressure variations across the layer are
negligible. In addition the jacobian shows that variations in § along lines of constant
X are O(1), thus confirming that the dommant dlbplacement effect at the upper edge
of this region is that generated by the ¢ ¥'* central region term.

. Upper deck

The large dlqplaccment effect at the top edge of the upper vorticity layer leads to
a relatively strong, O(R™#¢7%), viscous blowing velocity out of the boundary layer.
This blowing velocity is significantly reduced in size in another asymptotic region,
often called the ‘upper deck’, above the separating boundary layer. An examination
of the scales involved demonstrates that the flow field in this region is irrotational,
and hence it is preferable to use eulerian coordinates. Suitable scalings are

z=¢X, R~ 27/—63Y (4.30a, b)
U= ues(f, a)+ € (iz X+, VY+0), Riv=c 3(y Y+7), (4.30 ¢, d)
Phil. Trans. R. Soc. Lond. A (1990)
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where u,, is the classical inviscid slip velocity above the separating particle, the lincar
terms in X and Y are part of the classical irrotational solution (including curvature
effects), and the U and V represent the perturbation generated by the displacement
effect. From matching to (4.29d) it follows that

V(X,0;T54) = (up—2) Yy on ¥=0, (4.31)

and we also require that >0 as ¥->00. From potential flow theory, the blowing

velocity (4.31) can be shown to induce a pressure field, which near the wall is given

as

(,l'(’es_‘%'s,g)2 « Y:FX(X/)
s e X=X

P=— dX’. (4.32)
4.8. Result

The equations (4.25, 26, 32) and (3.19) form the unsteady marginal interaction
problem. By means of the transformation

5 (ues_‘%'S')2 5 (ues_xs~)2Q
X = aﬂ3X, P = —7tP, n = 2—13t, (433&, b, C)
afty atpry
the nonlinear equation (4.32) can be written in the one parameter form
< L[ VX —uP) o
P=—— X X 4.34
n J_w x—x (4:34)

where P — 0 as | X| —~o0. This system is simpler than the interactive problem described
by Elliott ef al. (1983), and it should be relatively straightforward to find numerical
solutions. For the time being we note that while the interaction is expected to change
the form of the solution significantly if the scaled parameter A is negative, it still
appears, from the definitions of £ and x in (4.26¢, 33¢), that a singularity develops
at a finite time if 4 is positive (cf. (4.25)). This seems to add support to the theory
and calculations of Cowley et al. (1988), Smith (1988, 1990) and Peridier & Walker
(1989) that outer-deck pressure interactions are not sufficient to ecliminate
singularities in unsteady separation.

Of course, while the above analysis is consistent to leading order, if it is to be of
physical relevance example solutions of the classical boundary-layer equations that
demonstrate marginal separation must be found, i.e. solutions which satisfy (4.3, 5,
6b, c) at the point S. Attempts to find such an example for a circular cylinder moved
in various monotonic and oscillatory paths have yet to be successful ; clearly the mere
existence of a certain type behaviour does not necessarily imply that it occurs in all
situations. A more promising class of flows might be those induced by vortices;
certainly the velocity profiles presented by Peridier & Walker (1989) for such flows
are close to the behaviour required by (4.9).

5. Large-time marginal symmetric separation
5.1. Introduction
As outlined in §3, the possibility of separation at a linc of symmetry has been
examined by Banks & Zaturska (1979), Simpson & Stewartson (1982a) and Riley &
Vasantha (19890) from an eulerian standpoint, and by Van Dommelen (1981, 1990)
and Lam (1988) using a lagrangian approach.

Phil. Trans. RB. Soc. Lond. A (1990)
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The question arises whether the symmetry might lead to significant changes in
marginal behaviour; we will show that it does. In particular we find that symmetric
marginal separation is not ordinarily possible at a finite time if the solution to the
momentum equations remains regular. We also show that marginal symmetric
separation can occur at infinite time, and we propose asymptotic scalings for it.

5.2. Conditions for finite time marginal separation

In the case of symmetric separation, x is an antisymmetric function of £ (see, for
example, Van Dommelen 1990). The development of a singularity is thus
characterized by the lagrangian derivative x (7;¢;a) vanishing on the symmetry
line, i.e.

xg =0, (6.1)

since the other first derivative is identically zero by symmetry. The singularity must
also occur in the middle of the boundary layer, which implies that the first zero is a
minimum in the z , profile, i.e. the first derivative of the profile with respect to » must

vanish :
g, = 0. (5.2)

However, if the point (74;ts;as) represents the lowest value of a for which a
singularity occurs, an additional condition needs to be satisfied. In particular, if x;,
were non-zero, the condition z , = 0 would define a regular surface ¢ = ¢,(5;a) with
values for both signs of (¢—a,). To avoid this, a necessary condition for regular

marginal separation is
Ty = 0. (5.3)

The Taylor series about the separation point for finite-time marginal separation
thus becomes

T %xgw(”_”s)z +xg7t(77"77s) (t—t5) +%xgn(t'“ts)2+xga(“—“s) +.. 5.4)

Now, in order that there is no separation for a < a4, the quadratic terms in (5.4) must
be definite; yet, if x is to satisfy the boundary-layer equation, the second-order time
derivative x;, must be zero (Van Dommelen 1990). That leads to a contradiction, and
we conclude that (5.4) cannot describe marginal separation. Hence, either the initial
separation time must approach infinity when the parameter a reaches its critical
value, or the structure must become singular in lagrangian coordinates.

5.3. Large time marginal structure

To establish what happens when the separation becomes marginal at a symmetry
line, numerical computations were conducted for impulsively started front
stagnation point flows. After some trial and error it was decided to concentrate on
a rigid body which is started with unit velocity, decelerated, accelerated again and
then kept at unit velocity. More precisely, we prescribed the streamwise gradient
G = 0u,/0x of the external flow velocity at the front stagnation point as

G = (1—a)+acos(R¢), for 0<Q<2m, (5.5a)

G=1, for 2m<Qt (5.5b)

Numerical solutions were obtained using lagrangian coordinates since these give a
precise definition of when separation starts. Preliminary runs suggested that the

computational times would be minimized by setting 2 = 1.1 (see also Riley &
Vasantha 1989b). In figure 6a we have plotted the separation times as a function of

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 6. Properties of the numerical solution for the symmetry-line separation flow governed by
(6.5, 6). (a) Plots of the separation time, ¢, (@ > a,), and the time, ¢, at which x, attains its
minimum value (¢ < a,). (b) Plots of £, and ¢, against In|e—a,| (almost indistinguishable).

a for this choice of . Separation was found to occur for a > a, = 0.879. In the same
graph we have also plotted the time, say ¢,, at which x, attained its (positive)
minimum for a < a,. The apparent symmetry of the figure about a, is true to
graphical accuracy, which allows a relatively precise estimate of a, to be made. Note
that both times rapidly increase as a, is approached. Further evidence that these
times become infinite for & = a is given in figure 6b which is a plot of ¢ and ¢, against
In |a—ag|. There seems to be a linear dependence (in fact ¢, & —3In|a —ay| + const.), in
agreement with an infinite time of marginal separation.

A naive attempt to obtain an asymptotic description of the marginal singularity
using exact solutions to the inviscid momentum equation, as was done by Van
Dommelen (1981) for the non-marginal case, appears to fail here. However, careful
examination of the numerical solutions suggested a possible asymptotic structure for
a = a,. This turns out to have significant regions of steady flow. Since it is usually
simpler to describe these in eulerian coordinates, for the rest of this section we revert
to the eulerian form for the equations of motion:

9. +9*+vg, = G+ G*+g,, (5.6a)
g+v, =0, (5.6b)

where g is the streamwise gradient of the velocity on the symmetry plane.

First we recall that the standard symmetric separation singularity has a negative
local minimum for g that approaches negative infinity as ¢ - ¢ (see, for example, Banks
& Zaturska 1979). However, because the second derivative of a function is non-
negative near a minimum, some a priori estimates restrict the possibility of
separation. In particular, if the value of the minimum for ¢ is at or above —@ once
@ is positive, the minimum value must increase with respect to the external flow
value @, so that separation cannot occur. The marginal case seems to occur when the
minimum of ¢ approaches —G@G from below; this value (here —1), is indeed a
stationary position of the inviscid part of the momentum equation (5.6a).

For the asymptotic region within which ¢ is close to —1, there is a range of
asymptotic scalings which select only the steady, inviscid terms from the momentum
equation at leading order. The precise scaling is fixed by the condition that the
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unsteady and viscous correction terms do not introduce singularities in the
expansion at the minimum in the velocity profile. This requires that both correction
terms appear at the same order in the asymptotic expansion. After some algebra
these considerations lead to the following scalings and solution for the expanding
central region:

t—=ty =1, ?/—,30=T%Y, (5.7a, b)
g~cosY—711477%8 sin ¥ —723(cos Y+ Ysin ¥), (5.7¢)
v~ —71isin Y +7731Y 4771 B, cos Y+ 7753(2sin Y — Y cos ¥), (6.7d)

where f, and f, are constants defined below, and ¢, is a constant which is chosen to
eliminate a complementary function in the first-order terms. Note that the
undetermined constants which appear in each term of (5.7¢, d) when the relevant
governing equations are solved, are fixed either by matching with the Hiemenz layer
adjacent to the wall (see below), or by the requirement that the term one order 77!
smaller is free of singularities at ¥ = m, i.e. where g & —1.

Near the wall, a perturbed Hiemenz front stagnation point boundary-layer profile
exists:

A

v~ v(f) + T (F) H TR 0a(G) + T 0g(9) + (5.8a)
where g=y—p, (5.8b)

and £, ~ 0.64790 is the Hiemenz displacement thickness. Runge-Kutta solutions
of the governing equations for the v;, using the following asymptotic behaviour for
large y,

vy ~ —1, (5.9a)

v~ P+ B (5.95)

vy ~ — 1559 —351 G+ 3+ Ba, (5.9¢)

vy ~ somd +2ib1 9" 169 — (B +38) 97+ G+ T+ By (5.94)

yield B, =0.10285, B, =0.0821, g, =0.200, (5.9e, f, g9)
and the normalized wall shear gradient is

g, ~ 1.232588 —7710.473524 —77%0.32339 — 772 0.58698. (5.10)

As in the preceding sections, above the central expanding region there is an upper
vorticity layer present, although here the velocity is only slightly perturbed from the
G = 1 external flow (unlike the finite velocity variations of §§3, 4). We again use the
transposition theorem

T=Y—Yres(t), T=0—Ypet), (5.11a, b)

where Yeert) ~ 20T+ B+ 771 B —7 R+ . (5.11c)

to subtract off the appropriate upward motion of the viscous layer. With this choice
of y,¢ the upper viscous layer expands in integer inverse powers of 7:

T~ —g+710,+ ..., (5.12)
oy~ al{(%?ia%?i)r—%_—;i—zdy—r (%7%%7)%@}, (5.13a)
g (V' +1) 9 (y*+1)
00 e—gyz -1
where oy~ {J‘—wmdy} . (5.130b)
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Finally, in order to complete the asymptotic solution it is necessary to consider one
more region, because far above the upper vorticity layer the exponentially small
disturbances in the almost potential flow are determined by the initial solution (cf.
Brown & Stewartson 1965; Van Dommelen & Shen 1985). We therefore introduce an
adjustment region, where

j=eY, t=—j—e? w~eTiV4dar+WV)+.... (5.14a,b,¢)

The function W, is not fixed by substituting into the momentum equation, and may
depend on the time evolution. However, for small ¥, matching with (5.12, 13) yields

Wy~4nY+In(—In¥)—Ine,) (¥ 0), (5.14d)
while for large ¥ an analysis similar to that of Van Dommelen & Shen (1985) gives
W, ~2InY+by, (Y1 0), (5.14e)

where b,, is a constant.

The large time marginal structure derived here seems self-consistent and agrees
qualitatively with numerical data. However, the lagrangian numerical computation
is very ill-conditioned near marginality, which makes a quantitative comparison
impossible.

6. Concluding remarks

Much of what we know today about the computed and analytical structure of the
initial stages of unsteady separation has resulted from the introduction of lagrangian
coordinates to the problem. While these coordinates have their well-known
disadvantages (e.g. non-uniqueness of the coordinate system, lengthy formulae, lack
of a steady state), in the case of unsteady separation these are outweighed by some
of their less publicized advantages (e.g. simplified convection, particle accumulation
in the separation region, adaptation to inviscid boundary-layer thickening,
decoupling of the streamwise and normal particle positions).

In numerical work, a lagrangian solution for unsteady boundary-layer separation
problems is advantageous because the resolution problems for more conventional
procedures are severe. Lagrangian procedures work well for such flows; the first
accepted solution to unsteady two-dimensional separation was lagrangian (Van
Dommelen & Shen 1980), and since then many other flows have been calculated by
this method. Yet, based on our own experiences and those of others, it appears that
while most ordinary numerical techniques will work for lagrangian coordinates (e.g.
Crank—Nicolson, SOR, LSOR, ADI, multigrid iteration, approximate factorization,
multilevel time discretizations, etc.), they have to be applied with care. Despite such
difficulties lagrangian coordinates are possibly the best generally applicable
numerical method for obtaining solutions to the boundary-layer equations when
separation occurs. It might also be argued that the common tendency to concentrate
on eulerian coordinates has been at the expense of the development of more robust
procedures to overcome the difficulties that arise in lagrangian computations, e.g.
varying coefficients, and the need to regenerate the mesh adaptively. A current
emphasis is on three-dimensional unsteady computations, in order to verify the
existence of the three-dimensional separation structure (see §3.8). For that reason,
we have developed a three-dimensional lagrangian code; this uses overlapping
meshes, local discretizations, and ADI iteration to resolve some of the topological
issues inherent in three-dimensional curved surfaces.

For analytical work, the advantages of a lagrangian approach are due to the key
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observation that in lagrangian coordinates the components of particle position
parallel to the surface are governed by momentum equations which decouple from
the continuity equation that specifies the particle position normal to the surface. In
part, this decoupling occurs because the pressure gradient which drives the flow is
independent of the normal coordinate. As a result of the lagrangian simplifications,
a general analytic theory of unsteady separation can be obtained by hypothesizing
that it is only the normal component of particle position that becomes singular, i.e.
by assuming that the other components of particle position remain regular (a
conjecture supported, for example, by numerical solutions). On this basis, the self-
consistency of the asymptotic expansions to arbitrary high order is clear. More
important is the indeterminacy in the asymptotic expansions which arises because of
a certain arbitrariness as to which lagrangian derivatives vanish at separation. In the
present approach the indeterminacy is removed by assuming that the smallest
possible number of lagrangian derivatives are zero, while satisfying any conditions
imposed by symmetries. This assumption is clearly plausible, and is supported by
numerical solutions.

In principle, it should also be possible to explain the same separation structures
using eulerian coordinates ; indeed some of the symmetry line singularities were first
obtained this way. However, the complexity of the eulerian analysis rapidly
increases with the number of dimensions. As a result, even the expansion for two-
dimensional asymmetric separation has not been taken to sufficiently high order to
determine uniquely an arbitrary function that arises in the analysis. In addition, no
purely eulerian description has been given either of the general three-dimensional
separation structure or of the form of separation off a symmetry line or axis.

We note that because of the simplicity of the lagrangian approach, this method of
solution has been applied to a class of problems closely related to the symmetry line
singularity, namely exact solutions to the two-dimensional Navier—Stokes equations,
or the three-dimensional euler equations with symmetry line, stagnation-point
similitude (see, for example, Stern & Paldor 1983 ; Russell & Landahl 1984 ; Stuart
1984, 1988, 1990; Childress et al. 1989). The important point to note about these
equations is that the pressure gradient term in the x-momentum equation, which
governs the flow towards the symmetry line, is dependent only on the time, ¢; in
particular it is independent of the normal coordinate, y. Hence, for a flow that is
unbounded as y 00, in lagrangian coordinates the x-momentum equation decouples
from the continuity equation and the two other momentum equations (cf. classical
boundary-layer theory); in ‘channel flow’ the. x-momentum equation and the
continuity equation are coupled through the boundary condition to fix the unknown
pressure gradient.

We recall that for inviscid flows Van Dommelen (1981) has proved that x is a
regular function of lagrangian coordinates, provided that the streamwise pressure
gradient is regular. Hence for flows unbounded in y, for which it is normal to
prescribe a regular pressure gradient, the ordinary inviscid singularity has the Banks
& Zaturska (1979) structure. For examples of more general flows leading to the same
singularity see Stern & Paldor (1983), Russell & Landahl (1984), Stuart (1984, 1988,
1990), and Childress et al. (1989). Further, as the numerical boundary-layer solutions
of Van Dommelen (1987), Lam (1988) and Dennis & Ingham (1979) show, these
boundary-layer collisions also occur when the domain is bounded in the x-direction
(in this case the stagnation point, similitude equations arise from a Taylor series
expansion about the symmetry line).
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Childress et al. (1989) present, in addition, inviscid ‘channel flow’ solutions for
which the pressure gradient is given implicitly and can become infinite within a finite
time; this allows alternative singular behaviour. However, attempts to find
equivalent finite-time singularities in the viscous equations have not yet proved
successful (Cox 1989; Budd et al. 1990).

As an illustration of the simplicity of the lagrangian approach, the interactive
structure of a new form of asymmetric, marginal separation has been derived. The
flow is assumed to approach, and then recover from, separation on the same
timescale as it takes for a fluid particle to pass over the body; interactive effects are
only important for a short O(R™%) timescale. We find that a ‘triple deck’ type
interaction can modify, but apparently not remove, the separation singularity.
Although verification of the existence of this type of marginal separation awaits the
numerical solution of the boundary-layer equations, we envision that the solution
will be applicable for flows which start far from separation, momentarily approach
it, and then recover to a strongly attached state, e.g. the temporary approach of a
vortex to a boundary layer, or a pitching airfoil.

We have also shown that finite-time marginal separation cannot occur on a
symmetry line, although it is possible at infinite time. This suggests the possibility
of a type of asymmetric marginal separation which can occur at infinite time.

Finally, we note that it has been argued (see for example Ersoy & Walker 1985;
Stuart 1988) that the explosive growth associated with boundary-layer separation
singularities may be related to eruptions from the sublayer of a turbulent boundary
layer, and so with the regeneration of vorticity in such layers. In particular Ersoy &
Walker (1985, 1987) and Hon & Walker (1988) have studied the boundary-layer flow
induced by two of the proposed basic elements of wall-layer turbulence, namely the
hairpin vortex (Head & Bandyophadyay 1981) and the discrete loop vortex (see
Falco 1977). They show, inter alia, that a hairpin vortex with a symmetry plane can
induce a separation singularity behind the vortex head. As yet the boundary-layer
calculations are confined to the symmetry line, and there is no guarantee that the
hairpin vortex initiates separation there; indeed two-dimensional approximations
for the flow generated by the counter-rotating hairpin-vortex legs suggest that initial
separation singularities off the symmetry line are possible (see, for example, Ersoy &
Walker 1985). However, if the initial separation singularity is not a symmetric
boundary-layer collision then the region of boundary-layer growth will be crescent-
shaped (VDC); as Walker (1990) has noted, this is in qualitative agreement with
experimental observations.

A complementary view of the eruptions from the sublayer is that the spanwise
motion induced by the vortices can lead to symmetry-line, boundary-layer collisions
(see, for example, Stuart 1988). However, further theory and calculations are needed
to determine whether either or both types of separation are indeed responsible for
sublayer bursting and related phenomena (e.g. the formation of secondary hairpin
vortices).

It has also been suggested that separation singularities may be related to
boundary-layer transition, for instance through the spanwise flow induced by
longitudinal vortices (see Stuart 1965). Here we refer to the important work of Hall
& Smith (1989) concerning vortex/wave interactions. These authors derive nonlinear
modulation equations of novel type, and propose, inter alia, singular terminal forms
of the solutions at finite times or finite distances downstream. Such singularities lead
to the rapid shortening of time and lengthscales, a phenomena typical of transition.
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We finish by noting that for some of their modulation equations, especially those of
boundary-layer type, a lagrangian approach may be advantageous in determining
which of the proposed singularities, and thus which physical processes, are of
acceptable form.
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